SEMESTRAL EXAMINATION

COMPLEX ANALYSIS B. MATH III YEAR I SEMESTER, 2009-2010

Notations: $U = \{z : |z| < 1\}, H(\Omega)$ is the space of holomorphic functions on the region Ω, γ^* is the range of the path γ .

Max. marks: 100

Time Limit: 3hrs

1. Prove or disprove the following:

if f is an entire function such that $\left|f(|z|^{1/3})\right| \leq 2+3|z|^{300}$ then f is a polynomial. [10]

2. Prove (in detail) that $\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \phi(t) dt$ is a holomorphic function of z on U

for any continuous function ϕ on $[-\pi, \pi]$ with $\phi(-\pi) = \phi(\pi)$.

[15] 3. Find the number of zeros of the polynomial $1 - 2z^{10} + (3/4)z^n$ in U for any integer n > 10. [10]

4. Prove that $\prod_{n=1}^{\infty} \frac{(1-\frac{1}{n^2})-z}{1-(1-\frac{1}{n^2})z}$ converges uniformly on compact subsets of U

to a holomorphic function whose zeros have 1 as a limit point. [10]

5. Let f be a holomorphic function on $\mathbb{C}\setminus\{0\}$ such that f has a pole at 0 and $z^2 f(z)$ is bounded on $\{z : |z| \ge a\}$ for some positive number a. Prove that the residue of f at 0 is necessarily 0. [10]

6. Find an entire function whose real part is $1 + 2x^2 - 2y^2 + 3x^3 - 9xy^2$.[15]

7. Find all holomorphic functions f on $\mathbb{C}\setminus\{1\}$ such that f has a pole of order 3 at 1 and $\operatorname{Re}[(z-1)^3 f(z)] \geq 3$ for all z. [10]

8. Evaluate
$$\int_{0}^{\infty} \frac{x \sin(x)}{x^4 + 1} dx$$
 by the method of residues. [20]